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- Abstract

Transonic Blade-Vortex Interactions (BVI) are simulated numerically and the noise mechanisms,

are investigated. The two-dimensional high frequency transonic small disturbance equation is solved

numerically (VTRAN2 code). An ADI scheme with monotone switches is used; viscous effects are

included on the boundary and the vortex is simulated by the cloud-in-cell method. The Kirchhoff

method is used for the extension of the numerical two-dimensional near-field aerodynamic results to the:
i

linear acoustic three-dimensional far-field. The viscous effect (shock/boundary layer interaction) on BVI
!

is investigated. The different types of shock motion are identified and compared. Two important

disturbances with different directivity exist in the pressure signal and are believed to be related to the

fluctuating lift and drag forces. Noise directivity for different cases is shown. The maximum radiation

occurs at an angle between 60 ° and 90 ° below the horizontal for an airfoil-fixed coordinate system and

depends on the details of the airfoil shape. Different airfoil shapes are studied and classified according to

the BVI noise produced.
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Introduction

Among the several types of helicopter noise [1], that due to Blade Vortex-Interactions (BVI) is one

of the most important. BVI is the aerodynamic interaction of a rotor blade with the trailing vortex system

generated by preceding blades as shown in Fig. 1 (from reference [2]). It usually occurs during

helicopter descent, or low speed maneuvers. It is loud, impulsive in character, and tends to dominate the

other sources when it occurs, as shown experimentally (e. g. Schmitz and Yu [3]). Also, very

complicated BVI patterns arise from tilt-rotor aircraft [4]. Interactions generate the most significant noise

when they are intrinsically unsteady, as when the voriex is exactly parallel to the blade, or when the

vortex is nearly parallel to the blade (a vertical interaction is steady for 2-D blade). Incompressible BVIs

have been successfully treated in the past (e. g. reference [5]). For typical helicopter cases though, it

was shown in references [6] and [7] that the aerodynamics and aeroacoustics of the interactions are

intrinsically transonic. In such cases the flow can be initially modeled by two-dimensional unsteady

transonic flow (fig. 2).

Unsteady transonic flow problems have been solved numerically in the past. The low frequency

approximation of the unsteady two-dimensional Transonic Small Disturbance (TSD) equation was fh'st

soIved by BaIlhaus and Goorjian [8] and the LTRAN2 code was created. Since then, the code has been

updated to include high frequency effects [9], viscosity [10], monotone switches [11] and second order

effects [ 12]. However, the acoustic waves resulting from the unsteady motion have not been adequately

studied.

Two-dimensional transonic BVI was first studied computationally in the near-and mid-field by

George and Chang [6, 7] who used the high frequency transonic small-disturbance equation, including

regions of convected vorticity. References [6, 7] also contain detailed discussions of the background

and formulation of the transonic BVI problem. A comprehensive code, VTRAN2 was developed [13,

14] as a modification of LTRAN2 to include the vortex. The vorticity is biline,'u-ly distributed inside a

vortex core and branch cuts are introduced in the x-direction. The vortex can either follow a prescribed

path, or can be convected with the free stream. A new look at the physics of the acoustics of unsteady

transonic flow was _;iven in reference [15]. In references [16-24] th: two-dimensional transonic BVI

problem is also solved using the small disturbance theory and the more complex Euler and thin-layer
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Navier Stokesequations.Also Baederet al. [22, 23] and Liu et aI. [24] presented some near and mid

field results. At great distances from the airfoil though, the waves become very difficult to follow

because of numerical diffusion and dispersion errors.

Kirchhoff's method was introduced [ 14, 25-29] to extend the numerically calculated nonlinear

aerodynamic results to the linear acoustic far-field. This method uses a Green's function for the

linearized governing equation to derive a representation for the solution in terms of its values and

derivatives on a closed surface S in space, which is assumed to include all the nonlinear flow effects and

noise sources. The potential and its derivatives can be numerically calculated from a nonlinear

aerodynamic code (e. g. VTRAN2). The Kirchhoff method has the advantage of including the full

diffraction effects and eliminates the erroneous propagation of the reactive near-field.

_n this paper we examine the noise due to BVI. An existing code (VTRAN2) was enhanced to

include monotone switches and viscous effects. The viscous effects (shock/boundary layer interaction)

on BVI noise are studied. The resulting noise because of the different types of shock-wave motion types

in the near- and the far-field is investigated and the different resulting disturbances are analyzed. The

noise mechanisms are explained physically and the relation between the noise signal and oscillating lift

and drag forces is shown. The complicated directivity patterns of BVI noise are also studied. Different

airfoil shapes are studied and classified according to the produced BVI noise.

The Numerical Method (VTRAN2)

VTRAN2 is a code [13, I4] developed for analyzing the interactions of convected regions of

vorticity with airfoils using transonic small disturbance theory. It is based on the ADI implicit scheme of

the LTRAN2 code [8] with the inclusion of the high frequency term as described in reference [9] and the

addition of regions of convected vorticity using the cloud-in-cell and multiple branch-cut approach. The

code ,,,,,as modified to include viscosity [8] and monotone switches [10].

The governing equation for the unsteady transonic small-disturbance potential and the boundary

conditions can be found in various references (e. g. [30, 25]). The classical Kutta condition is satisfied

by this small-disturb_ce formulation. We are interested in c_es for which the reduced frequency range

is less than 4, which is the limit for the application of the Kutta condition [31]. A finitc vortex core is

used (cl_,ud-in-cell method) for reasons of computational stability. The core has a finite square shape



limitedby grid-linesandthevorticity is bilinearlydistributedinside.Thus,severalbranchcuts(in thex-

direction)areintroduced.Thevortexcanhaveafreepath(convectedby theflow) or aprescribedpath

(m.issdistanceYv = constant,vortexvelocity=Uo). Detailsof thetheoreticalformulationweregivenby

Chang[32] andLyrintzis [14].

For theviscositycalculationstheviscousrampmethod(wedge)is used.Theviscousrampmodel

simulatestheshock/boundarylayerinteractionbyplacinga wedge-nosedrampatthe baseof theshock

to obtainthereducedshockpressurerise. Thesurfacegeometrymustbeaugmentedby therampmodel

byaddinganextraviscoustermin theboundarycondition.Detailsof thecalculationof thatviscousterm

canbe foundin reference[33]. Therampmodelwasderivedfor steady-statecomputations.However,

it canbeincorporatedintounsteadycomputationsin aquasi-steadyfashion. Thus,themodelisvalid for

low fi-equencies,andits usein high frequencyproblemssuchasBVI can only give some qualitative

information about the effect 6f viscosity, wi_ almost no additional CPU time_ The more complicated and

CPU time-consuming lag-entrainment method which was also incorporated in our code was not used,

because it was not superior to the wedge model for unsteady cases [33].

An alternating direction imTlicit (ADI) method is used for the solution of the equation, where the

high frequency term is added in the y-sweep. An approximate factorization technique with monotone

switches [I I] is used for the steady calculation, which provides a start-up solution. Special care is taken

for the conservative differentiation along the uneven mesh.

A 213x 199 mesh is used for the calculations. The computational mesh points are clustered more

densely near and in front of the airfoil and are stretched exponentially from the near airfoil re,on to

about 200 chords from the airfoil in the x- and 400 in the y-direction. More mesh points are added in the

y-direction for the more accurate evaluation of the normal derivatives on the Kirchhoff surface. The

VTRAN2 code was shown to agree well with other, more complex approaches including Euler and thin-

layer Navier-Stokes computations [7]. The code has a high vectorization level and the CPU time for

each two-dimensional case on a Cray-2 computer is about 4 minutes for 800 time-marching steps.

Kirchhoff's Method for the Far-Field

In the past acoustic analogy has been used for the evaluation of noise signals. This apprc_._c-h starts

from the calculation of the nonlinear near- a,_d mid-field and the far-field is found from ,:,; f:,.ce and



volume integrals of near- and mid-field flow and body surfaces. We should note that there are

substantial difficulties in including the nonlinear quadrupole tern1 (which requires second derivatives) in

The volume integrals, especially around shock surfaces. Thus, a lot of investigators use near-field data

only on the blade surface, which is less accurate as shock surfaces are not included in the calculation.

Kirchhoff's method includes the calculation of the nonlinear near- and mid-field with the far-field

solutions found from a linear I,Erchhoff formulation evaluated on a surface surrounding the nonlinear-

field. This method provides an adequate matching between the aerodynamic nonlinear near-field and the

acoustic linear far-field. The full nonlinear equations are solved in the first region (near-field), usually

numerically, and a surface int%_al of the solution over the control surface gives enough information for

the anab-dcal calculation in the second re,on (far-field). The advantage of the method is that non linear

effect_ (e. g. shock waves) are accounted for. Also, the surface integrals and the first derivatives needed

can be easily evaluated from the near-field CFD data; fuIl diffraction and focusing effects are included

while eliminating the propagation of the reactive near-field.

The Kirchhoff equation for a moving surface was originally derived by Morgans [34]. A Green's

function approach will be used to rederive the Kirchhoff fommla in a coordinate system fixed to the

airfoil which moves with velocity U o. The Green's function approach was introduced by Morino [35,

36]. Farassat and Myers [37] rederived the Kirchhoff equation for an arbitrarily moving piecewise

smooth deformable surface using generalized derivatives. A very brief discussion of the Kirchhoff

fore-relation is given in the following paragraphs; for more details the reader is referred to the above

references, and also references [14, 26].

A Green's function for the linearized governing equation is used to derive a representation for the

solution in terms of its values and derivatives on a closed surface S in space, which is assumed to

include all the nonlinear flow effects and noise sources. A full three-dimensional formulation is used,

because the Green's function is simpler in this case, and because the method can be easily extended to

include spanwise variations to model three-dimensional BVI. The pressure distribution at a point

(Xo,Yo,Z o) outside a rigid fixed surface is

p(xo,Yo,Zo,t ) _- 1 1 _ 4 ( - M 2-- S'
0t 0 o- ) + roa 0-- oJ o (1)



where ro = {(x-x')2+[32[(y-y')2+(z-z')2]} 1/2

[ro-M(x-x')]
1;-

Co{]2

= (1_M2)1/2

where ..... denotes a point on the Kirchhoff surface, subscript o denotes the transformed values using

the well "known Prandd-Glauert transformation:

x o=x, Yo =_y,zo=_z

n is the outward vector normal to the surface S, and subscript 1; implies the evaluation at the retarded

time tl= t-l;.

Thus, the values of the potential and its normal derivatives on an arbitrary surface around the

spanwise extent of an arbitrary flow are enough to give the far-field radiation at any arbitrary external

point: In our work we use as a control volume a rectangular box (Fig. 3) coinciding with mesh points in

order to simplify the computation. The potential and its derivatives can be numerica]ly calculated from

an aerodynamic near-field code; then equation (1) is used to evaluate the solution in the far-field. Thus,

the solution is integrated on a surface in the mid-field and nonlinear effects (e. g. shock waves) in the

near-field are fully accounted for.

Since Kirchhoffs method assumes that linear equations hold outside this control surface S, the

latter must be chosen large enough to include the region of nonlinear behavior. However, due to

increasing mesh spacing the accuracy of the numerical solution is limited to the region immediately

surrounding the moving blade. Thus S cannot be be too large, because the numerical evaluation of the

derivatives needed (equation 1) is not accurate at large distances. Therefore, a judicious choice of S is

required for the effectiveness of the Kirchhoff method. A rectangular box-shaped surface (Fig. 3) is

used for the calculations. The VTRAN2 code is used to calculate the solutions on the surface S. The y-

limits of S for our calculations a_e varied over a range from Ys = 0.25 to 4.00 chords distance from the

airfoil. Higher Mach numbers yield higher optimum values for Ys because of stronger nonlinearities in

the larger lateral extent of the flow region. The x-limits for S were also varied between 0.15 and 0.50

chords and, similarly, values of 0.25 chords upstream and downstream of the leading and trailing edges

respectively, are chosen.

6



Strip theoryapproximationis used;thatis, the two-dimensionalVTRAN2 solutionis appliedon

different segmentsof thebladein astripwisemanner.Bladesegmentsrangingfrom two to sixteenin

aspectratio ,areused.UsuallymeshlimitationskeeptheKirchhoff surfacecloseenoughto theblade,

wherethetwo-dimensionalstrip theorysolutio/l is still valid. By makingcalculationswith or without

the inclusion of the tip surfaceswe found [27] that theyhave only a small effect; thus theywere

neglectedfor mostof thecalculations.

Types of Unsteady Shock Motion

Tijdeman [38] showed experimentally, using an oscillating flap, that varying airfoil surface

boundary conditions can give three different types of unsteady shock motion:

Type A shock motion, where the _hock at the rear of the supersonic region merely moves back and forth

with concurrent changes in strength.

Type B shock motion, where the shock moves similarly to type A, but disappears temporarily during the

unsteady motion.

Type C shock motion, where the supersonic region disappears, but a shock wave leaves the airfoil and

propagates forward to the far-field.

The above three types of unsteady shock motions affect heavily the characteristics (e. g. lift, drag) of all

unsteady transonic flows. The type of shock motion that occurs in a given situation depends on the flow

characteristics (e. g. free-stream Mach number, airfoil shape, amplitude and frequency of the unsteady

motion). These types of shock motion can even be observed in steady airfoils with severe flow

separation downstream of the shock waves. Their existence in BVI has been verified by different

experiments and calculations (e. g. Tangler's experiments [39]).

Results and Discussion

Some mid-field calculations for BVI are performed using VTRAN2 with a refined mesh to follow

the waves of interest. Then the Kirchhoff method is used to examine the noise at the far-field. The

calculations are made in an airfoil-fixed reference frame. A more detailed discussion of the coordinate

systems ased for BVI calculations is given in reference [25].

We use a NACA 64A006 airfoil, the vortex strength was Ulv = 0.4 (Clv is a nondimensional

measure of the vortex strength: CIv = 2F/cUo) and the vortex miss-distance Yo = -05 _hords, for a fixed



vortexpath. Theinitial vortexpositionis Xo= -9.51chordsandthefreestreamvelocity is one(arbitrary

units)sothevortexpassesbelowthe airfoil leading edge at time T = 9.51. The Mach numbers of 0.875,

0.854, and 0.822 correspond to shock wave motions of types A, B, and C, respectively, as also shown

in reference [7]. The three different types of the unsteady shock motion are thus studied. For the

Kirchhoff surface (Fig. 3) we used a span of 8 chords, Xs = 0.25 chords and Ys = 3.5, 2.5 and 1.9

chords for the three types A, B a,ad C, respectively. Note that a larger Ys is required for higher Mach

numbers, because the y-extent of the nonlinear region of the flow increases, as expected from the scaling

laws of transonic flow.

Fig. 4 shows the effect of the grid on the lift coefficient CI(T). A standard mesh 213xl 19 is

compared to a finer in the y-direction mesh 213x199. The results show that the fine mesh produces a

I'

smoother solution. Smoother solutions are also produced for the pressure coefficient at different points,

especially in the far-field using the Kirchhoff method.: Finer meshes were also tried, but the results were

not substantially changed. Thus, the fine mesh (213x199) will be used in the subsequent calculations.

Figs 5, 6 and 7 show the effect of viscosity in the calculations. The pressure coefficient Cp(T) at

point P (-0.3000, -0.17478), the lift coefficient CI(T) and the drag coefficient Cd(T) are plotted for a

type A shock motion, for viscous and nonviscous calculations. We can see only a slight influence of the

effect of viscosity. Since viscosity is adde}t as an extra boundary condition to model shock/boundary

layer interaction, we expect the influence to be stronger with the increase of the strength of the shock.

Thus, the effect of viscosity is lower for the types B and C (not shown) and zero for subcritical cases.

The following results include the effect of the viscosity.

Figs 8 and 9 show the Cp(T) signal of the three types of unsteady shock motion in the mid-field

(point P) from VTRAI'_I2 and in the far-field (point O, r=20 chords, 0=30o), as Shown in Fig. 3, using

Kirchhoff's method. The signal for the higher Mach number (type A) propagates upstream slower, so it

takes longer time to arrive at the same point (Fig. 9). The signal consists of three disturbances (I, II, III)

as also shown in references [25, 26]. The primary disturbance I is the main BVI noise and it ori#nates

at the airfoil when the vortex passes below the leading edge. It is believed to be related to the fluctuating

lift coefficient C1. The seconda W disturbance II corresponds to the unsteady shock motion and depends

on the motion of the entire supersonic region induced by the vortex passage. It originates at the airfoil at

a later time, and depends heavily on the type of shock motion. It is believed to be somehow related to
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thefluctuatingdragcoefficient Cd. Thetime delayof disturbanceII decreaseswith decreasingMach

numberanddisappearsin subcriticaIcases.Thedirectivity of thetwo disturbancesis verydifferentas

will beshownlater.Theexistenceof theseconddisturbancewasobservedcomputationallyby George

and C[_ang[7] andwasalso verified experimentallyby Caradonna er al. [40] and Shenoy [41], and

computationally by George and Lyrintzis [25, 26], Owen and Shenoy [20] and Liu et aI. [24]. For

example, in reference 41 Schlieren experiments were performed for a rotor and a second disturbance was

seen to propagate in the far-field as postulated by computational results. Disturbance III is considered

to be a standing disturbance due to the vortex passage and it is not a propagating wave. Thus this

disturbance disappears as we move from the mid-field (Fig.8) to the far-field (Fig. 9).

From Figs 8 and 9 we can see that disturbance I increases slightly with increasing Mach number.

We sl_ould also bear in mind that the definition of Cp includes division by M 2, so the effect of the Mach

number is stronger than it appears in ",.he above figures. Disturbance II exists also for type A and B

shock motions, because it is caused by the movement of the entire supersonic pocket, and seems to be

magnified as we move into the far-field. It also appears to be decreasing as we move from type C to

type A. However, if we measure it from peak to peak (instead of just reading the max value) it still

increases, but at a lower rate that: disturbance I. Disturbance 11I is "almost the same for the three cases,

which seems reasonable since the same vortex strength is used.

Fig. i0 shows the lift coefficient Cl (T) for types A, B and C. We can see that their shapes relate

well to the first disturbances shown in previous figures. Specifically the total C1 change for the type A

shock motion is much higher than that for type C. Thus, we can deduce that disturbance I is most

probably related to C1.

The drag coefficient Cd will be discussed next. It is well known that in uniform subcritical

inviscid flow Cd is zero. It should be noted though, that Cd is not zero for subcritical inviscid BVI due

to the vortex acceleration. When the flow becomes supercritical, then the inviscid Cd is higher because

of the formation of supersonic _ockets. This was verified by running the code for subcritical and

supercritical eases. Cd can be easily calculated in terms of the pressure distribution. Fig. 11 shows Cd

(T) for types A, B and C. The Cd signal seems to catch some part of the second disturbance whereas C1

does not. This was also detected by Liu et al. [24] for some BVI cases using a thin layer Navier Stokes

code, but is easier to see in the case of an oscillating flap [I 5], because there the periodicity of the motion
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is well-defined. Thus, we canconcludethat the seconddisturbanceis mostprobablyrelatedto the

fluctuatingCdcausedmainly bythemovementof thesupersonicpocket.

In orderto verify theaboveargumentswecomparedresultsfrom airfoils with thesamethickness

distribution(i. e. samefamily) butdifferentcamber,in conditionsproducingthe samelift (i. e.different

angleof attack). Fig. 12 compares the Cp(T) BVI signals for the far-field (point O) for a NACA 1406

airfoil at an angle of attack or=0 o, for a NACA (0.5)406 at c_=0.536 ° and for a NACA 0006 at

o_=1.051 o. These conditions, with a standing vortex upstream, produce initial C1=0.229. In fact, the

entire unsteady lift Cl(T) for these cases is almost the same, whereas the unsteady drag Cd(T) is not. All

the airfoils have a type A shock motion for these conditions. We can see from Fig. 12 that disturbance I

remains unchanged, whereas disturbance 12 does change, becoming higher as the camber increases.

This a_ees with our earlier discussion of lift and drag forces.

We also investigated the effect of the point of maximum camber. In Fig. 13 we compared the

Cp(T) BVI signals for the far-field (point O) for NACA airfoils with different point of maximum camber:

1306 and 1406, for angles of attack that produce the same lift: o_=0.055 o and 0 o, respectively. We can

see from Fig. 13 that disturbance I remains unchanged, whereas disturbance II becomes larger as the

point of maximum camber moves downstream. Thus, the 1406 airfoil has the larger disturbance II.

From Figs 12 and 13 we can conclude that disturbance I is related to the lift and disturbance II is

related to the details of the airfoil shape, which produce a different supersonic pocket and thus a different

drag. Symmetric airfoils and airfoils with the point of maximum camber further upstream give a lower

value of disturbance II, for the same lift.

A parametric study showed [26] that the vortex strength has a strong effect on the noise signal,

whereas the vortex miss distance has only a weak effect. The maximum airfoil thickness and the details

of airfoil shape were also found to be important. A more detailed parametric study is currently being

carried out.

The directivity of the noise signal in the far-field is very complicated, as has been shown by

experimental studies. Most of these experiments are also three-dimensional, which makes it very

difficult to compare. For example, in reference [42] it was shown for a model helicopter rotor that the

maximtJm signal can have a different di:e.ction if the advance ratio Ix is v,-u-ied.
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Directivity is studiedin avortex-fixedcoordinatesystemkeepingthedistancefrom thevortexrv

constant(rv = 50chords).Therelationshipbetweentheangles0 and 0v in an airfoil fixed and a vortex

fixed coordinate system is shown in Fig. 14. The Cp(t) signal for different directions is plotted in Figs

15, 16, 17 for types A, B and C shock motion, respectively (note that span = 4 chords for this case).

By inspecting the plots, we can see that disturbance I is getting weaker as the direction angle 0 increases

from 0° to 90 ° (forward directivity). Disturbance II is getting stronger as the direction angle 0 increases

from 0 ° to 90 ° (downward directivity). The two disturbances also move closer as the angle 0 is

increased, and finally almost merge at 0 =120 °. This implies a different origin. If the origin of

disturbance I is at the airfoil leading edge, the origin of disturbance II is probably somewhere

downstream since this disturbance is related to the movement of the supersonic pocket.

._ It should be noted that for an oscillating flap [15] the opposite directivity was observed:

downward for disturbance I and tbrward for disturbance II. Thus, it was concluded that disturbance I is

due to the dipole produced from oscillating lift and disturbance II is produced from oscillating drag. If

we run a subcritical case then disturbance II disappears, as expected, and the directivity of disturbance I

is downward (disturbance increases as 0 is increased from 0 ° to 900). In both disturbances the

directivity observed was not expected to be exactly the one described by a pure dipole, because of

various nonlinearities (i. e. supersonic pocket) and source noncompactness. However, a main dipole-

like behavior, as the one detected in the oscillating flap case [15], was expected. The reason that the

directivity is different for an oscillating flap and BVI seems to be related to the difference in phase

between the two disturbances. Disturbance II has a higher frequency than disturbance I and also a

different phase with respect to disturbance I. Thus, it may add or subtract differently in different

directions for various cases (i. e. diffraction). In the oscillating flap case the frequency and the phase

difference are forced better than they are in the BVI case.

Consider next the noise signals resulting from types A, B and C shock motion (Figs 15, 16 and

17, respectively). The two disturbances keep approaching each other as angle 0 is increased because of

the different disturbance origin. Angles O = 70 ° and 60 ° , seem to give the maximum signal, if we

measure from peak to peak, for types A and B respectively. (If we only look at the maximum absolute

value then 0 = 0 ° seems to produce the greatest noise). For the case of type C we can see that the entire

II



region between 0 = 60 ° and 0 = 90 ° produces about the same noise. For subsonic cases (not shown)

the maximum noise is 90 ° , as it was mentioned above.

Fig. 18 shows the directivity of the BVI for a NACA 0006 airfoil. In this case the two

disturbances are closer to each other than the previous NACA 64A006 cases. If we increase 0, the two

disturbances now fall on top of each other more quickly (0 = 900). The noise becomes maximum at

0=90 ° , but still the noise at 0=60 ° and 70 ° is not much lower. Similar observations can be made for all

the other 4-digit airfoils tried (e. g. 1306, 1406, (0.5)406).

From the preceding discussion of BVI noise directivity we can conclude that the maximum noise

occurs at around 0 = 60 ° - 90 ° (0v = l0 ° - 30°), and depends on both disturbances I and II, but also on

the phase difference between the two disturbances, that can be different for various airfoil shapes.

Jn order to isolate the effect of disturbance II in the maximum noise we compared (Fig. 19) the

Cp(T) signal at the same poicit (0 = 90 ° and rv = 50 chords) for NACA airfoils 0006, (0.5)406 and

1406 for the conditions specified before for Fig. 12 (i. e. same lift). It can be noted that the two

disturbances are almost merged at this point. We can also see that the NACA 1406 airfoil has a larger

signal, which is consistent with the fact that the same airfoil has a larger disturbance II as shown in Fig.

12.

In Fig. 20 we compared the signal for NACA airfoils with different points of maximum camber:

1306 and 1406, for angles of attack that produce the same lift: 6t----0.055 o and 0 °, respectively. We

looked at the point of maximum noise: 0 = 90 ° and rv = 50 chords. We can see that the 1406 airfoil has

the larger signal, as expected since the same airfoil has a larger disturbance II as shown in Fig. 13.

We also ran the previously used 4-digit airfoils at subsonic Mach numbers at conditions producing

the same lift. They all produced the same BVI disturbance at all angles, as expected (no disturbance II

was observed). In conclusion, symmetric airfoils and airfoils with a point of maximum camber farther

upstream seem to give less BVI noise for transonic conditions producing the same lift.

A direct comparison of the results obtained from the different methods (from small disturbance to

Navier Stokes equations) shows that the results are very similar [7]. In fact, the further away we move

from the airfoil surface the results tend to coincide. Thus, we expect that our conclusions will also hold

if more accurate Euler/Navier-Stokes predictions are used. Three-dimensionality will, of course,
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influence the results. Some of the presented results will hold for three-dimensional cases, but only

actual three-dimensional calculations (e. g. [43]) can show that.

Conclusions

An existing numerical f-mite difference code VTRAN2 was modified to analyze noise due to

transonic BVI. The two-dimensional unsteady transonic small disturbance equation was solved

numerically using ADI techniques with monotone switches, including viscous effects due to shock-

boundary interaction and the cloud-in-cell method for the simulation of the vortex. The Kirchhoff's

method was used to extend the numerically calculated two-dimensional near-field aerodynamic results to

the three-dimensional linear acoustic far-field.

The viscous effect (shock/boundary layer interaction) on BVI noise was studied and was found to

have bnly a weak influence. The effect of the three types of unsteady shock motion (A, B and C) was

also investigated. The unsteady pressure coefficients Cp(t) showed the existence of two main

disturbances. The first one (1) is believed to be associated with the fluctuating lift coefficient (CI) and

has a strong forward directivi_, while the second (II) is believed to be associated with the fluctuating

drag coefficient (Cd) caused by the movement of the supersonic pocket and has a strong downward

directivity. The maximum radiation occurs at an angle 0 between 60 ° and 90 ° below the horizontal for

an airfoil-fixed coordinate system and depends on both disturbances I and II and the details of the airfoil

shape. Symmetric airfoils, and airfoils with a point of maximum camber fl_rther upstream seem to give

Iess BVI noise for conditions producing the same lift.

It is hoped that this work can contribute toward the better understanding of the mechanisms of

noise due to transonic BVI. In the future, we plan to study the influence of the details of airfoil shape,

especially near the leading edge. We will also include the effects of an oscillating aN'oil at the same time

with a BVI that can be useful in actual heIicopter cases (feathering).
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Fomaulationof BVI for afour bladedrotor (fromSchlinkerandAmiet [2]).

Two-dimensionalBVI.

Kircht_ofFssurfacefor thecalculationof thefar-field.

Effectof y-grid sizeontheCI(T) signal for type C

Effect of viscosity on the Cp(T) signal for type A; point P (x=-0.3000, y=-0.17478)

Effect of viscosity on the ClfT') signal for type A;

Effect of viscosity on the Cd(T) signal for type A;

Compag'son of the near-field BVI noise for types A, B, C; point P (x=-0.3000, y=-0.17478)

Comparison of the far-field BVI noise for types A, B, C; point O (r = 20 chords, 0=30 °,

span = 8 chords).

Figure 10. Comp,'uison of the C1 iT) signal for BVI, types A, B, C.

Figure 11. Comparison of the Cd (T) signal BVI for types A, B, C.

Figure 12. Comparison of the far-field noise for NACA 0006 (ot=l.051°), (0.5)d06 (0.----0.536 °) and

1406 (c_=0°), initial C1 = 0.229 in all cases; point O (r = 20 chords, 0=30 °, span = 8 chords).

Figure 13. Comparison of the far-field noise for NACA 1306 (ot=0.055 °) and 1406 (o_=0°), initial C1 =

0.229 in both cases; point O (r = 20 chords, 0=30 °, span = 8 chords).

Figure 14. Relation between an airfoil fixed and a vortex fixed coordinate system.

Figure 15. BVI noise directivity for type A; rv = 50 chords, span = 4 chords.

Figure 16. BVI noise directivity for type B; rv = 50 chords, span = 4 chords.

Figure 17. BVI noise directivity for type C; rv = 50 chords, span = 4 chords.

Figure 18. BVI noise directivity for NACA 0006; rv = 50 chords, span = 4 chords.

Figure 19. Comparison of the far-field noise for NACA 0006 (ot=l.051°), (0.5)406 (0.=0.536 °) and

1406 (o'.=0°), initial C1 = 0.229 in all cases; 0 = 90 °, rv = 50 chords, span = 4 chords.

Figure 20. Comparison of the far-field noise for NACA 1306 (¢z=0.055 °) and 1406 (0.=0°),

initial C1 = 0.229 in both cases; O = 90 °, rv = 50 chords, span = 4 chords.
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